Energy & Fuels | VOL. 24

Energy Intensity and Greenhouse Gas Emissions from Thermal Enhanced Oil Recovery

Publication Date Aug 4, 2010


Thermal enhanced oil recovery (TEOR) is used worldwide to increase the production of viscous heavy oils. The most common TEOR method injects steam into the subsurface reservoir to reduce the viscosity of the crude oil and allow it to flow. Production of steam for TEOR consumes energy, affecting the energy efficiency and greenhouse gas (GHG) emissions of oil production. This paper calculates the energy efficiency and GHG emissions of TEOR. Results are generated for generic cases and for California-specific cases. GHG emissions in the generic cases range from ≈105 to 120 g of CO2/MJ [gasoline basis, full fuel cycle, lower heating value (LHV) basis] when co-produced electricity displaces natural-gas-fired combined-cycle electricity. The carbon intensity varies with the energy demand of TEOR, the fuel combusted for steam generation, the amount of electric power co-generated, and the electricity mix. The emission range for co-generation-based TEOR systems is larger (≈70−120 g of CO2/MJ) when coal is displaced ...


Thermal Enhanced Oil Recovery Greenhouse Gas Emissions Combined-cycle Electricity Lower Heating Value Electricity Mix Efficiency Of Oil Production Production Of Heavy Oils Energy Intensity Efficiency Emissions Generic Cases

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.