Abstract
Energy inequalities are derived for an elliptic-hyperbolic operator arising in plasma physics. These inequalities imply the existence of distribution and weak solutions to various closed boundary-value problems. An existence theorem is proven for a related class of Keldysh equations, and the failure of expected methods for obtaining uniqueness is discussed. The proofs use ideas recently introduced by Lupo, Morawetz, and Payne for a generalized Tricomi operator. The existence of strong solutions under open boundary conditions is also proven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.