Abstract
We show that high energy measurements of Drell–Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell–Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell–Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.
Highlights
Hadron colliders are often viewed as “discovery machines.” They have limited precision, due to their messy QCD environments, but their high Center of Mass (CoM) energies allow them to directly produce new, heavy, particles
Hadron colliders are often contrasted with less energetic lepton colliders, which can reach high precision to indirectly probe new heavy physics, as exemplified by LEP, which tested the electroweak sector of the Standard Model (SM) with unprecedented per-mill accuracy [1]
The flaws in this argument are well known to practitioners of Effective Field Theory (EFT)
Summary
Hadron colliders are often viewed as “discovery machines.” They have limited precision, due to their messy QCD environments, but their high Center of Mass (CoM) energies allow them to directly produce new, heavy, particles. Hadron colliders are often viewed as “discovery machines.” They have limited precision, due to their messy QCD environments, but their high Center of Mass (CoM) energies allow them to directly produce new, heavy, particles. Hadron colliders are often contrasted with less energetic lepton colliders, which can reach high precision to indirectly probe new heavy physics, as exemplified by LEP, which tested the electroweak sector of the Standard Model (SM) with unprecedented per-mill accuracy [1]. The flaws in this argument are well known to practitioners of Effective Field Theory (EFT). While we propose to use DY for electroweak precision tests, previous studies have shown DY can probe 4-fermion contact operators [37,38,39,40,41,42,43,44], the running of electroweak gauge couplings [45,46], and quantum effects from superpartners [47,48]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.