Abstract

With the increasing demand for Internet of Things (IoT) with integrated wireless sensor networks (WSNs), sustainable power supply and management have become important issues to be addressed. Thermal energy in forms of waste heat or metabolic heat is a promising source for reliably supplying power to electronic devices; for instance, thermoelectric power generators are widely being researched as they are able to convert thermal energy into electricity. This paper specifically looks over the application of thermoelectricity as a sustainable power source for IoT including WSNs. Also, we discuss a few thermoelectric systems capable of operating electronic skin (e-skin) sensors despite their low output power from body heat. For a more accurate analysis on body heat harvesting, models of the human thermoregulatory system have been investigated. In addition, some clever designs of heat sinks that can be integrated with thermoelectric systems have also been introduced. For their power management, the integration with a DC–DC converter is addressed to boost its low output voltage to a more usable level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.