Abstract
Integrating unmanned aerial vehicles with RIS (UAV–RIS) can offer ubiquitous deployment services in communication-disabled areas, but is limited by the on-board energy of the UAVs. In this paper, a novel energy harvesting (EH) scheme on top of the UAV–RIS system, called EH-RIS scheme, is developed for the next generation high performance wireless system. The proposed EH-RIS scheme extends the simultaneous wireless information and power transfer (SWIPT) system by splitting the passive reflected arrays on the geometric space for transporting information and harvesting energy simultaneously. However, pedestrian mobility, and rapid channel changes post challenges to efficient resource allocation in wireless systems. Thus, a robust deep reinforcement learning (DRL)-based algorithm is developed to improve the proposed EH-RIS scheme for guaranteeing the quality of service (QoS) under dynamic wireless environments. The simulation results demonstrate the effectiveness and efficiency of the proposed robust DRL-based EH-RIS system, which not only outperform the existing state-of-the-art solutions but also approach to the performance of the exhaustive search method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.