Abstract

The present study is concerned with an energy-harvesting linear MR (EH-LMR) damper which is able to recover energy from external excitations using an electromagnetic energy extractor, and to adjust itself to excitations by varying the damping characteristics. The device has three main components: an MR part having a damper piston assembly movable in relation to the damper cylinder under an external excitation, a power generator to produce electrical power according to the relative movement between the damper piston and the cylinder assembly, and a conditioning electronics unit to interface directly with the generator and the MR damper. The EH-LMR damper integrates energy harvesting, dynamic sensor and MR damping technologies in a single device. The objective of the study is to get a better insight into the structure of EH-LMR damper components, to investigate the performance of each component and a device as a whole, and to compare results of experimental study against numerical data obtained in simulations conducted at the design stage. The research work demonstrates that the proposed EH-LMR damper provides a smart and compact solution with the potential of application to vibration isolation. The advantage of the device is its adaptability to external excitations and the fact that it does not need any extra power supply unit or sensor on account of its self-powered and self-sensing capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.