Abstract
This manuscript investigates energy harvesting from arterial blood pressure via the piezoelectric effect for the purpose of powering embedded micro-sensors in the human brain. One of the major hurdles in recording and measuring electrical data in the human nervous system is the lack of implantable and long term interfaces that record neural activity for extended periods of time. Recently, some authors have proposed micro sensors implanted deep in the brain that measure local electrical and physiological data which are then communicated to an external interrogator. This paper proposes a way of powering such interfaces. The geometry of the proposed harvester consists of a piezoelectric, circular, curved bimorph that fits into the blood vessel (specifically, the Carotid artery) and undergoes bending motion because of blood pressure variation. In addition, the harvester thickness is constrained such that it does not modify arterial wall dynamics. This transforms the problem into a known strain problem and the integral form of Gauss's law is used to obtain an equation relating arterial wall motion to the induced voltage. The theoretical model is validated by means of a Multiphysics 3D-FEA simulation comparing the harvested power at different load resistances. The peak harvested power achieved for the Carotid artery (proximal to Brain), with PZT-5H, was 11.7 μW. The peak power for the Aorta was 203.4 μW. Further, the variation of harvested power with variation in the harvester width and thickness, arterial contractility, and pulse rate is investigated. Moreover, potential application of the harvester as a chronic, implantable and real-time Blood pressure sensor is considered. Energy harvested via this mechanism will also have applications in long-term, implantable Brain Micro-stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.