Abstract

The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.

Highlights

  • Energy harvesting devices generate electric energy from their surroundings through direct energy conversion [1]

  • This study describes the various energy harvesting techniques used in implanted biomedical devices

  • All methods for harvesting energy from environmental sources and human body motion and vibration are reviewed and discussed. These methods can be used in portable devices and implantable devices, such as implantable micro-systems, cochlear implant, and pacemakers

Read more

Summary

Introduction

Energy harvesting devices generate electric energy from their surroundings through direct energy conversion [1]. Implantable biomedical devices are powered using a couple of wires; this setting may cause skin infections, discomfort, and other hazards to patients. Implanted batteries provide the energy for implantable biomedical devices. Batteries have fixed energy density, limited lifetime, chemical side effects, and large size. Researchers have developed several methods to harvest energy for implantable devices. Devices powered by harvested energy have longer lifetime and provide more comfort and safety than conventional devices. A good solution to energy problems in wireless sensors is to scavenge energy from the ambient environment. Energies that may be scavenged include infrared radiant energy, thermal energy (solar–thermal, geothermal gradients of temperature, combustion), kinetic energy (wind, waves, gravity, vibration, and body motion), wireless transfer energy, and RF radiation energy (inductive and capacitive coupling)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call