Abstract
In this work the energy harvesting performance of a piezoelectric curved energy generator (THin layer UNimorph DrivER (THUNDER)) is studied via experimental and analytical methods. The analytical model of the THUNDER is created based on the linear mechanical electrical constitutive law of the piezoelectric material, the linear elastic constitutive law of the substrate, and the Euler–Bernoulli beam theory. With these linear modal functions, the Rayleigh-Ritz approach was used to obtain the reduced mechanical–electrical coupled modulation equations. The analytical model is verified by the experimental results. Both the experimental and analytical results of the THUNDER’s AC power output, DC power output with Rectifier Bridge and a capacitor, as well as the power output with a microcontroller energy harvesting circuit are reported. Based on the theoretical model, the analytical solution of the DC power is derived in terms of the vibration amplitude, frequency, and the electrical load. To harvest energy from low-frequency vibration source by a piezoelectric generator requires the piezoelectric device possessing low resonance frequency and good flexibility. The THUNDER developed by Langley Research Center exhibits high power when it is used as an energy generator and large displacement when it is used as an actuator. Compared to the less flexible PZT, although THUNDER is more difficult to model, THUNDER has better vibration absorption capacity and higher energy recovery efficiency. The effect of the THUNDER’s radius of curvature on energy harvesting efficiency is mainly investigated. We set the THUNDER’s radius of curvature as a dynamic tuning parameter which can tune the piezoelectric generators’ frequency with the source excitation frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.