Abstract

One of the main issues of wearable electronic devices regards their power supply and autonomy. The exploitation of mechanical energy from body motion and vibrations can be realized by using piezoelectric materials coupled with a proper energy storage device. To this aim, Self-Powered Supercapacitors (SPSCs) have been investigated over the last decades, either as internally integrated SPSC (iSPSC), where the piezoelectric element of the device is used as Super Capacitor (SC) separator, or via an external integration (eSPSC), where the piezoelectric unit and the SC are connected by a bridge rectifier. In this paper, an eSPSC power supply is developed by integrating a stuck of commercial ceramic piezoelectric disks and an ionic liquid-based micro-SC. In detail, a stack of 15 commercial lead zirconate titanate (PZT) disks is used as the energy harvesting unit and mechanically stressed by a compressive force of 85 N at 2 Hz. The piezoelectric output successfully charged the 22 mF supercapacitor up to 3.1 V after 2 h of test, achieving a stored energy value equal to 110 mJ. The proposed integrated system outperforms the state-of-the-art SPSC assembled with micro-SC (both iSPSC and eSPSC). The use of the two different units (piezo-energy harvesting unit and micro-SC energy storage unit) allows an independent sizing and tuning of the supercapacitor according to the output current of the piezoelectric unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.