Abstract
Current model Hamiltonians and ab initio many-body quantum treatments of π-conjugated polyradicals formed from hydrocarbons produce divergent results because of numerical complexity and large size of the basis-function set used. We propose an alternative, three-term Hamiltonian, to describe these various polyradicals that simplifies considerably the computational cost while providing a physical interpretation for all three terms and a high degree of model universality. The essential feature of this Hamiltonian is a term, not present in previous models, describing the three-sited through-bond interaction that governs the noninteracting spin-up and spin-down sectors. A computation of the lowest energy gaps and spin configurations for the smaller polyradicals demonstrates the efficacy of the model and its potential in applications in revealing electrical conductivity and ferromagnetism of the more complicated substituted polyradicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.