Abstract
The energy gap law relates the nonradiative decay rate to the energy gap separating the ground and excited states. Here we report that the energy gap law can be applied to exciton dynamics in gold cluster molecules. Size-dependent electrochemical and optical properties were investigated for a series of n-hexanethiolate-protected gold clusters ranging from Au25 to Au333. Voltammetric studies reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of these clusters decrease with increasing cluster size. Combined femtosecond and nanosecond time-resolved transient absorption measurements show that the exciton lifetimes decrease with increasing cluster size. Comparison of the size-dependent exciton lifetimes with the HOMO-LUMO gaps shows that they are linearly correlated, demonstrating the energy gap law for excitons in these gold cluster molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.