Abstract

Energy flux measurements by a calorimetric probe in a rf-magnetron plasma used for the deposition of super-hard c-BN coatings are presented and discussed. Argon as working gas is used for sputtering a h-BN target. Adding a certain amount of N2 is essential for the formation of stoichiometric BN films, since a lack of nitrogen will lead to boron rich films. Subsequently, the contributions of different plasma species, surface reactions, and film growth to the resulting variation of the substrate temperature in dependence on nitrogen admixture are estimated and discussed. In addition, SRIM simulations are performed to estimate the energy influx by sputtered neutral atoms. The influence of magnetron target power and oxygen admixture (for comparison with nitrogen) to the process gas on the total energy flux is determined and discussed qualitatively, too. The results indicate that variation of the energy influx due to additional nitrogen flow, which causes a decrease of electron and ion densities, electron temperature and plasma potential, is negligible, while the admixture of oxygen leads to a drastic increase of the energy influx. The typical hysteresis effect which can be observed during magnetron sputtering in oxygen containing gas mixtures has also been confirmed in the energy influx measurements for the investigated system. However, the underlying mechanism is not understood yet, and will be addressed in further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.