Abstract
Energy flow and balance in convergent systems beyond petapascal energy densities controls the fate of late-stage stars and the potential for controlling thermonuclear inertial fusion ignition. Time-resolved x-ray self-emission imaging combined with a Bayesian inference analysis is used to describe the energy flow and the potential information stored in the rebounding spherical shock at 0.22PPa (2.2Gbar or billions of atmospheres pressure). This analysis, together with a simple mechanical model, describes the trajectory of the shell and the time history of the pressure at the fuel-shell interface, ablation pressure, and energy partitioning including kinetic energy of the shell and internal energy of the fuel. The techniques used here provide a fully self-consistent uncertainty analysis of integrated implosion data, a thermodynamic-path independent measurement of pressure in the petapascal range, and can be used to deduce the energy flow in a wide variety of implosion systems to petapascal energy densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.