Freshwater Biology | VOL. 58

Energy flow and the trophic basis of macroinvertebrate and amphibian production in a neotropical stream food web

Publication Date Mar 20, 2013


Summary Despite the typically high taxonomic and functional diversity of tropical habitats, little is known about the roles of individual consumers in their ecosystem structure and function. We studied the trophic basis of production in a tropical headwater stream by identifying major sources of energy, measuring energy flow through consumers and characterising interactions among trophic levels and functional groups. We examined gut contents of 18 dominant macroinvertebrate and two tadpole taxa and used these data, along with previously published estimates of secondary production, to quantify food-web structure and energy flow pathways. We also examined the prevalence of omnivory and patterns of resource consumption across seasons and habitats. Non-algal biofilm, a heterogeneous polysaccharidic matrix, was the most utilised food resource in the stream. Contrary to some studies of Old World tropical stream food webs, detrital energy sources were consumed at relatively high rates and contributed significantly to overall energy flow, although much of this was attributable to a single shredder taxon. Algal consumption rates were similar to values reported for temperate streams and were highest during the dry season. Omnivory was prevalent across all functional groups, particularly predators, suggesting traditional functional and trophic assignments based on temperate regions may not be appropriate for tropical systems. Seasonal patterns of resource consumption appeared linked to hydrological disturbance. This is the first...


Trophic Basis Of Production Energy Flow Patterns Of Resource Consumption Tropical Headwater Stream Energy Flow Pathways Stream Food Web Tropical Stream Tropical Habitats High Diversity Of Habitats Patterns Of Consumption

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.