Abstract
The tribofilm formed on nanocrystalline diamond coating during ultralow friction in presence of water and glycerol lubrication has been studied experimentally by energy filtering transmission electron microscopy (EF-TEM) and electron energy loss spectroscopy (EELS) on focus ion beam (FIB) cross sections. Surprisingly, even under mild tribological conditions, a tribo-induced hybridization change (sp3 towards sp2) can be clearly detected at the top of the coating resulting in the formation of a 40nm thick amorphous sp2 rich carbon layer with embedded diamond nanoparticles less than 5nm diameter. Classical molecular dynamics simulations of diamond single crystal asperity collisions can explain this finding. Tribochemical amorphization of the contact zone between the colliding diamond grains followed by fracture events at the asperity shoulders produces ultra-nanodiamonds that remain attached to the amorphous carbon phase. An additional atomistic sliding simulation of two ultra-nanocrystalline diamond coatings yields an amorphous sp2 rich carbon layer that grows at a rate that is comparable to corresponding layers on the softest diamond single crystal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.