Abstract

Woody biomass feedstock produced from willow and hybrid poplar can be converted into bioenergy via thermochemical and biochemical processes. Variation in key properties that relate to the quality of biomass feedstock and determine its value for energy conversion were determined at rotation age (3 years), in 30 willow and seven hybrid poplar clones, grown in a short-rotation intensive culture (SRIC) system in central NY. Substantial clonal variation in the concentrations of nitrogen (2.9– 5.0 g kg −1 ), phosphorus (0.4– 0.8 g kg −1 ) potassium (1.2– 2.4 g kg −1 ), sodium (0.09– 0.20 g kg −1 ), calcium (3.9– 8.9 g kg −1 ), magnesium (0.2– 0.6 g kg −1 ), ash (13.2– 27.2 g kg −1 ) and bark percentage (3.6–8.1%) was found in stem (bark+wood) samples. A lower amount of variation was documented for specific gravity (0.33– 0.48 g cm −3 ) and percent moisture (49–56%). Bark had a higher concentration of inorganic elements and ash, relative to wood. Willow clones as a group had a higher specific gravity, bark percentage and calcium concentration relative to hybrid poplar clones, which had a higher potassium concentration. The two groups were similar in terms of the concentrations of other elements and ash. Clonal variation in these characteristics present opportunities for manipulating feedstock quality through selection, breeding and plantation management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.