Abstract
IntroductionThe purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons.MethodsWe studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates.ResultsIn humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1±0.3 SWAs, 1±0.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5±1.9 SWA ARM, 4.5±1.5 SWA BACK and 5.4±2.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54±0.009 kcal/min during free living and a REE of 0.82±0.06 kcal/min.ConclusionSWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with “gold standard”, IC, in humans.
Highlights
The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA ARM and SWA BACK (SWAs) to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons
The objectives of this study were three: 1) to compare SWA EE measurements after placing the device in two different areas of the human body, i.e. the right arm and the latissimus dorsi muscle, with EE measured by Indirect Calorimetry (IC), in resting conditions; 2) to compare SWA EE measurements in the same body areas and EE measured by IC, during intense physical activity 3) after having established the correlation between SWA EE measurements obtained from arm and trunk in humans in resting condition and during intense physical activity, to evaluate REE and TEE in free living condition in baboons over a period of 6 days with the SWA placed on the latissimus dorsi muscle in a special jacket
The Pearson’s correlation between the energy expenditure recorded by SWA ARM and the SWA BACK was extremely high, r = 0.95, p,0.0001 (Fig. 1A); there were very high correlations between energy expenditures measured by SWA ARM and IC, r = 0.75, p,0.0001, and between SWA BACK and IC, r = 0.76, p = 0.0001 (Fig. 1B–C)
Summary
The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons. The precise evaluation of Energy Expenditure (EE) during free living conditions is important in order to prevent and manage the increasing sedentary lifestyle [1]. The gold standards for measuring Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in free living conditions are Indirect Calorimetry (IC) and the Double Labeled. The generation of these devices is represented by multisensory activity and lifestyle monitors that provide an estimate of REE and TEE and improve the measurement of the physical activity by using different algorithms Questionnaire, pedometers and accelerometers were the first alternative methods used to have an accurate and reliable assessment of EE during physical activity [4,5,6].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.