Abstract

It is by now well known that the integral Hellmann–Feynman (IHF) theorem has little quantitative utility for chemically interesting problems, although the formalism potentially affords a ready physical interpretation of changes in molecular conformation. In this paper, the IHF theorem is applied to variational and simple LCAO wavefunctions for the H2+ ground state, which range in quality from crude to essentially exact. The IHF results improve quite dramatically with the quality of the wavefunctions. This suggests that errors in the IHF formula may be of the same order as those in the wavefunction. (In contrast, errors in variationally determined energies are of second order.) Our results suggest a convenient test which can be applied to any revised IHF formalism developed in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call