Abstract

The objective of the present study is to evaluate the characteristics of energy and exergy performances, environmental sustainability, and economic aspect for three configurations namely, single stage, two stage and segmented thermoelectric generator systems. The experimental study is conducted on single stage thermoelectric generator system to evaluate the energy and exergy performances under various temperature and mass flow rate conditions of working fluids. The Multiphysics coupled numerical approach is proposed for the detail comparison which is validated with experimental results within ± 10% error. The two stage parallel thermoelectric generator system with Skutterudite + Bismuth Telluride presents superior energy and exergy performances, higher environmental sustainability and lower economic. The maximum values of power, energy efficiency, exergy efficiency, net energy efficiency and net exergy efficiency of two stage parallel thermoelectric generator system with Skutterudite + Bismuth Telluride show 220.17 W, 25.42%, 42.01%, 15.38% and 23.36%, respectively. The same configuration shows minimum CO2 emission of 0.0717 g/W, maximum net CO2 mitigation of 43.41 tones, maximum carbon credit of 1078.6 $, minimum levelized cost of energy of 0.0196 $/kWh and minimum energy payback time of 4 months 1 day.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call