Abstract

We studied the energy exchange dynamics across the low-to-high-confinement (L–H) transition in NSTX discharges using the gas-puff imaging (GPI) diagnostic. The investigation focused on the energy exchange between flows and turbulence to help clarify the mechanism of the L–H transition. We applied this study to three types of heating schemes, including a total of 17 shots from the NSTX 2010 campaign run. Results show that the edge fluctuation characteristics (fluctuation levels, radial and poloidal correlation lengths) measured using GPI do not vary just prior to the H-mode transition, but change after the transition. Using a velocimetry approach (orthogonal-dynamics programming), velocity fields of a cm GPI view during the L–H transition were obtained with good spatial (∼1 cm) and temporal (∼2.5 μs) resolutions. Analysis using these velocity fields shows that the production term is systematically negative just prior to the L–H transition, indicating a transfer from mean flows to turbulence, which is inconsistent with the predator–prey paradigm. Moreover, the inferred absolute value of the production term is two orders of magnitude too small to explain the observed rapid L–H transition. These discrepancies are further reinforced by consideration of the ratio between the kinetic energy in the mean flow to the thermal free energy, which is estimated to be much less than 1, suggesting again that the turbulence depletion mechanism may not play an important role in the transition to the H-mode. Although the Reynolds work therefore appears to be too small to directly deplete the turbulent free energy reservoir, order-of-magnitude analysis shows that the Reynolds stress may still make a non-negligible contribution to the observed poloidal flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.