Abstract

Discrete breathers in graphane (fully hydrogenated graphene) are studied by the molecular dynamics method. It has previously been demonstrated that in graphane, there are discrete breathers in the form of single hydrogen atoms oscillating with the big amplitude in the direction perpendicular to the graphane plane with a frequency lying in the bandgap of the phonon spectrum. In this work, the possibility of the existence of longlived clusters of discrete breathers of different configurations is shown, their properties are studied, and the possibility of energy exchange between the discrete breathers in the cluster is demonstrated. These results are important for the discussion of physical processes occurring during dehydrogenation of graphane at high temperatures, which, in turn, is of great importance for the development of the hydrogen storage and transport devices based on sp2-carbon materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.