Abstract
Legal restrictions on high-GWP refrigerants lead to the widespread use of carbon dioxide in commercial refrigeration, where there is a high energy consumption. Although CO2 has many benefits, its lower critical temperature and higher operation pressure compared to other refrigerants lead to performance reduction. For this reason, studies have been conducted by researchers for performance enhancement. This paper presents energy, environmental impact, and exergoeconomic (3E) analysis of transcritical CO2 booster and parallel compression supermarket refrigeration cycles based on meteorological data of 11 provinces in Türkiye as samples of different climatic regions. Parallel compression cycle achieved up to 18.4% higher coefficient of performance than booster cycle between the investigated ambient temperatures. Up to 5.6% annual energy consumption and environmental impact reduction were obtained using parallel compression. Unit product costs of the parallel compression cycles were calculated between 8.2% and 18% lower than booster cycle in investigated provinces. Developing energy-efficient systems that use environmentally friendly refrigerants will contribute to a sustainable future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.