Abstract

Fast Ignition (FI) is recognized as a potentially promising approach to achieve the high-energy-gain target performance needed for commercial inertial confinement fusion. Here we consider deuteron beam driven FI which provides not only the “hot spot” ignition spark, but also extra “bonus” fusion energy through reactions in the target. In this study, we estimate the impact of the added deposition energy due to the fusion reactions occurring, based on calculations using a modified energy multiplication factor Fc. The deuteron beam energy deposition range and time are also evaluated in order to estimate the desired deuteron initial energy. It is shown that an average of 30% extra energy can be gained from deuterons with 1 MeV initial energy and 12% from deuterons with 3 MeV initial energy. These results indicate that the energy benefit of this approach could be significant, but a much more comprehensive calculation is needed to realize a full 3D design for realistic experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.