Abstract

Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including the relativistic corrections. The energy eigenvalues of spherical symmetric potentials for two-particle bound state systems with relativistic corrections are analytically derived. The energy spectra of linear and funnel potentials with orbital and radial excitations are determined. The energy spectrum of a superposition of Coulomb and Yukawa potentials is also determined. Our result shows that the energy spectrum with the relativistic corrections for the linear, harmonic oscillator and funnel potentials is smaller than the upper boundaries for the energy spectrum established in the framework of the spinless Salpeter equation for the orbital and radial excited states. The relativistic corrections to the energy spectrum of a superposition of the attractive Coulomb potential and the Yukawa (exponentially screened Coulomb) potentials are very small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call