Abstract

Energy minimization is an important design goal in wireless video transmission. We examine how the RF energy and the analog circuit energy, which account for a large part of the energy consumption for wireless video transmission, can be controlled with physical-layer parameters (e.g., modulation level, bit rate, bit error rate, and multiple access interference) and link-layer specifications (e.g., the buffer status, idle time, and active time). Building on these insights, we develop three energy-efficient video transmission schemes for the single-user system, i.e., frame-by-frame transmission, group of pictures (GOP)-by-GOP transmission, and client-buffer-related energy-efficient video transmission (CBEVT). Our simulations indicate that energy savings of up to 85% is achievable in the radio frequency (RF) front end using the CBEVT algorithm. We also present an energy-efficient optimal smoothing algorithm for reducing the RF front-end energy consumption and the peak data rate. For CDMA-based multiuser systems, we propose an RF front-end energy model that assumes perfect power control. We find the signal-to-interference-noise ratio (SINR) for the entire system that minimizes the total energy consumption. We propose the multiuser-based energy-efficient video transmission (MBEVT) algorithm, which can achieve energy savings of up to 38% for a six-user CDMA system with an independent 16-MB buffer for every uplink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.