Abstract
This work investigates a downlink nonorthogonal multiple access (NOMA) scheme with unmanned aerial vehicle (UAV) aided wireless communication, where a single UAV was regarded as an air base station (ABS) to communicate with multiple ground users. Considering the constraints of velocity and maneuverability, a UAV energy efficiency (EE) model was proposed via collaborative design resource allocation and trajectory optimization. Based on this, an EE maximization problem was formulated to jointly optimize the transmit power of ground users and the trajectory of the UAV. To obtain the optimal solutions, this nonconvex problem was transformed into an equivalent convex optimization problem on the basis of three user clustering algorithms. After several alternating iterations, our proposed algorithms converged quickly. The simulation results show an enhancement in EE with NOMA because our proposed algorithm is nearly 99.6% superior to other OMA schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.