Abstract

The analysis and performance of an efficient microwave coupler using asymmetrical impedance matching are introduced aiming high-speed electro-optical space switches employing a semiconductor optical amplifier (SOA). Through the reduction of the step matching resistor, its parasitic, and the optimization of the injected electrical switching signals, the proposed coupler was able to significantly reduce the SOA energy consumption while maintaining its ultrafast state transition with reduced transient behavior. Overall, the SOA-based switching action achieved guard times below $\text{500} \,\text{ps}$ with overshoots close to $\text{0}\%$ while operating with low bias currents and short pre-impulses, with a driver power close to $\text{135}\, \text {mW}$ and energy consumption of $\text{3.4}\, \text {pJ}/\text {bit}$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.