Abstract
The recent development of low cost wireless sensors enables novel internet-of-things (IoT) applications, such as the monitoring of water distribution networks. In such scenarios, the lifetime of the wireless sensor network (WSN) is a major concern, given that sensor node replacement is generally inconvenient and costly. In this paper, a compressive sensing-based scheduling scheme is proposed that conserves energy by activating only a small subset of sensor nodes in each timeslot to sense and transmit. Compressive sensing introduces a cardinality constraint that makes the scheduling optimization problem particularly challenging. Taking advantage of the network topology imposed by the IoT water monitoring scenario, the scheduling problem is decomposed into simpler subproblems, and a dynamic-programming-based solution method is proposed. Based on the proposed method, a solution algorithm is derived, whose complexity and energy-wise performance are investigated. The complexity of the proposed algorithm is characterized and its performance is evaluated numerically via an IoT emulator of water distribution networks. The analytical and numerical results show that the proposed algorithm outperforms state-of-the-art approaches in terms of energy consumption, network lifetime, and robustness to sensor node failures. It is argued that the derived solution approach is general and it can be potentially applied to more IoT scenarios such as WSN scheduling in smart cities and intelligent transport systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.