Abstract

This paper studies energy efficient scheduling of periodic real-time tasks on multi-core processors with voltage islands, in which cores are partitioned into multiple blocks (termed voltage islands) and each block has its own power source to supply voltage. Cores in the same block always operate at the same voltage level, but can be adjusted by using Dynamic Voltage and Frequency Scaling (DVFS). We propose a Voltage Island Largest Capacity First (VILCF) algorithm for energy efficient scheduling of periodic real-time tasks on multi-core processors. It achieves better energy efficiency by fully utilizing the remaining capacity of an island before turning on more islands or increasing the voltage level of the current active islands. We provide detailed theoretical analysis of the approximation ratio of the proposed VILCF algorithm in terms of energy efficiency. In addition, our experimental results show that VILCF significantly outperforms the existing algorithms when there are multiple cores in a voltage island.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call