Abstract

ABSTRACTThe cloud technology provides sustainable solutions to the modern industrial robotic cells. Within the context, the objective of this research is to minimise the energy consumption of robots during assembly in a cloud environment. Given a robot path and based on the inverse kinematics and dynamics of the robot from the cloud, a set of feasible configurations of the robot can be derived, followed by calculating the desirable forces and torques on the joints and links of the robot. Energy consumption is then calculated for each feasible configuration along the path. The ones with the lowest energy consumption are chosen. Since the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be applied to energy-efficient robotic assembly. This cloud-based energy-efficient approach for robotic applications can largely enhance the current practice as demonstrated by the results of three case studies, leading towards sustainable manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.