Abstract

In this paper, a downlink energy efficiency maximization problem is investigated in an intelligent reflective surface (IRS)-assisted visible light communication system. In order to extend wireless communication coverage of the onshore base station, an IRS mounted on a unmanned aerial vehicle (UAV) is introduced to assist an onshore lighthouse with simultaneously providing remote ship users wireless communication services and illumination. Aiming to maximizing the energy efficiency of the proposed system, a resource allocation problem is formulated as the ratio of the achievable system sum rate to the total power consumption under the constraints of the user’s data requirement and transmit power budget. Due to the non-convexity of the proposed problem, the Dinkelbach method and mean-square error (MSE) method are adopted to turn the non-convex origin problem into two equivalent problems, namely transmit beamforming and reflected phase shifting. The Lagrangian method and semidefinite relaxation technique are used to obtain the closed-form solutions of these two subproblems. Accordingly, an alternative optimization-based resource allocation scheme is proposed to obtain the optimal system energy efficiency. The simulation results show that the proposed scheme performs better in terms of energy efficiency over benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call