Abstract

In this paper, we study energy-efficient resource allocation in the downlink of buffer-aided wireless relay networks. We aim at maximizing the system average energy efficiency while maintaining the queue stability at both the base station (BS) and relays. We formulate the resource allocation design as a novel stochastic network optimization problem and based on the well-known Lyapunov drift-plus-penalty policy and the system constraints, we transform it to an instantaneous non-convex optimization problem to be solved in each time slot. We analyze the instantaneous utility function and propose a novel algorithm to find its optimum point. Based on that, we present an effective distributed strategy to get the globally optimal solution for channel and power allocation. Furthermore, we show that the proposed algorithm can be used as a building block for energy-efficient resource allocation in conventional relay networks, where the relays do not have buffering capability, but the BS queues need to be stabilized. Using extensive simulations, we show that the proposed algorithm is able to provide higher energy efficiency compared with the existing algorithms, while keeping the system queues stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call