Abstract

The resource allocation for device-to-device (D2D) multicast communications is investigated. To achieve fair energy efficiency (EE) among different multicast groups, the max-min fairness criterion is used as the optimization criterion and the EE of D2D multicast groups are taken as the optimization objective function. The aim is to maximize the minimum EE for different D2D multicast groups under the constraints of the maximum transmit power and minimum transmit rate, which is modeled as a non-convex and mixed-integer fractional programming problem. Here, suboptimal resource allocation algorithms are proposed to solve this problem. First, channel assignment scheme is performed to assign channel to D2D multicast groups. Second, for a given channel assignment, iterative power allocation schemes with and without loss of cellular users’ rate are completed, respectively. Simulation results corroborate the convergence performance of the proposed algorithms. In addition, compared with the traditional throughput maximization algorithm, the proposed algorithms can improve the energy efficiency of the system and the fairness achieved among different multicast groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.