Abstract

Energy efficiency (EE) is an important metric for a Cognitive radio network (CRN). We focus on the EE maximization problem in a sensing-based spectrum sharing CRN for delay-sensitive applications. With the aid of one-dimension exhaustive search, fractional programming and Lagrange duality method, two energy-efficient optimal sensing time and power allocation policies are derived with the consideration of Average/Peak transmit power (ATP/PTP) constraints and Average interference power (AIP) constraints, respectively. Simulation results show that the proposed policies can achieve higher EE compared to the conventional spectrum sharing schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.