Abstract

Human-carried or vehicle-mounted sensors can be exploited to collect data ubiquitously for urban sensing. In this work, we study a new coverage problem, opportunistic coverage, to characterize the sensing quality of such people-centric sensing systems. Compared with the traditional static coverage and dynamic coverage in sensor networks, opportunistic coverage has some unique characteristics caused by the requirements of urban sensing applications and human mobility features such as spatio-temporal correlation, hotspots effects and randomness. In order to achieve good trade-off between energy consumption and coverage quality, we propose an offline node selection mechanism and an online adaptive sampling mechanism. The former can select the minimum number of nodes to achieve coverage requirements, based on the history trajectories of the given set of nodes, and the latter can help each selected node to decide whether to perform the sampling task at some time adaptively. Based on a real human mobility dataset and a taxi mobility dataset, extensive simulation results evaluate that our proposed models and mechanisms are effective and efficient in terms of energy consumption and coverage quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call