Abstract

Earth's surface is covered with two-thirds of water. The marine world covers the lakes, rivers and sea and is rich in natural resources largely unexplored by human beings. Recently, underwater wireless sensor network (UWSN) with the advancement in the Internet of underwater smart things has emerged as promising networking techniques to explore the mysteries of vastly unexplored ocean environments for several underwater applications. These applications include offshore exploration, pollution monitoring, disaster prevention, oceanographic data collection, offshore oil fields monitoring, tactical surveillance applications and several others. However, the underwater channel impairments caused by multipath effects, fading, bit errors, variable and high latency and low bandwidth severely limits the data transmission reliability for UWSNs-based applications. This results in poor quality-aware data gathering in UWSNs. Therefore, designing a quality of service (QoS)-aware data gathering protocol to monitor and explore oceans is challenging in the underwater environments. In this paper, we propose a bio-inspired multi-objective evolutionary routing protocol (called MERP) for UWSNs-based applications. The designed routing protocol exploits the features of the natural evolution of the multi-objective genetic algorithm in order to provide reliable and energy-aware information gathering in UWSNs. The extensive simulation results show that the developed protocol attains its defined goals compared to existing UWSNs-based routing protocols during monitoring and exploring underwater environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.