Abstract

Unmanned Aerial Vehicles (UAVs) can be deployed as aerial wireless base stations which dynamically cover the wireless communication networks for Ground Users (GUs). The most challenging problem is how to control multi-UAVs to achieve on-demand coverage of wireless communication networks while maintaining connectivity among them. In this paper, the cooperative trajectory optimization of UAVs is studied to maximize the communication efficiency in the dynamic deployment of UAVs for emergency communication scenarios. We transform the problem into a Markov game problem and propose a distributed trajectory optimization algorithm, Double-Stream Attention multi-agent Actor-Critic (DSAAC), based on Multi-Agent Deep Reinforcement Learning (MADRL). The throughput, safety distance, and power consumption of UAVs are comprehensively taken into account for designing a practical reward function. For complex emergency communication scenarios, we design a double data stream network structure that provides a capacity for the Actor network to process state changes. Thus, UAVs can sense the movement trends of the GUs as well as other UAVs. To establish effective cooperation strategies for UAVs, we develop a hierarchical multi-head attention encoder in the Critic network. This encoder can reduce the redundant information through the attention mechanism, which resolves the problem of the curse of dimensionality as the number of both UAVs and GUs increases. We construct a simulation environment for emergency networks with multi-UAVs and compare the effects of the different numbers of GUs and UAVs on algorithms. The DSAAC algorithm improves communication efficiency by 56.7%, throughput by 71.2%, energy saving by 19.8%, and reduces the number of crashes by 57.7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call