Abstract

In this study, we enhance the angular-selective light absorption capabilities of guest–host liquid crystal (GHLC) cells by introducing a novel design featuring a uniform lying helix (ULH) structure. Previously GHLC cells, predominantly vertically aligned cells absorbed obliquely incident light but compromised x-direction visibility. In stark contrast, our ULH-based design allows incident light to seamlessly traverse transmittance in both z- and x-directions while efficiently obstructing oblique incident light in the y-direction. Our innovative ULH-based GHLC cell achieves an impressive optical performance. Specifically, it attains a substantial transmittance rate of 56.7% in the z-direction. Furthermore, in oblique views encompassing both the x- and y-directions, it maintains competitive transmittance rates of 44.2% and 29.5%, respectively. This strategic design not only ensures clear and unobstructed views for building occupants in the z- and x-directions but also contributes significantly to energy conservation by preventing oblique incident light from penetrating, thus reducing cooling requirements. Our ULH-based GHLC cell represents a breakthrough in smart window technology, offering an elegant solution to the challenge of balancing energy efficiency and occupant comfort in architectural settings. This advancement holds promising implications for sustainable building designs by enhancing indoor environmental quality while mitigating energy consumption for cooling, ultimately redefining the potential of smart windows in contemporary architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call