Abstract

A typical wireless sensor node has little protection against radio jamming. The situation becomes worse if energy-efficient jamming can be achieved by exploiting knowledge of the data link layer. Encrypting the packets may help to prevent the jammer from taking actions based on the content of the packets, but the temporal arrangement of the packets induced by the nature of the protocol might unravel patterns that the jammer can take advantage of, even when the packets are encrypted. By looking at the packet interarrival times in three representative MAC protocols, S-MAC, LMAC, and B-MAC, we derive several jamming attacks that allow the jammer to jam S-MAC, LMAC, and B-MAC energy efficiently. The jamming attacks are based on realistic assumptions. The algorithms are described in detail and simulated. The effectiveness and efficiency of the attacks are examined. In addition, we validate our simulation model by comparing its results with measurements obtained from actual implementation on our sensor node prototypes. We show that it takes little effort to implement such effective jammers, making them a realistic threat. Careful analysis of other protocols belonging to the respective categories of S-MAC, LMAC, and B-MAC reveals that those protocols are, to some extent, also susceptible to our attacks. The result of this investigation provides new insights into the security considerations of MAC protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.