Abstract

This paper investigates the problem of energy consumption in wireless sensor networks. Wireless sensor nodes deployed in harsh environment where the conditions change drastically suffer from sudden changes in link quality and node status. The end-to-end delay of each sensor node varies due to the variation of link quality and node status. On the other hand, the sensor nodes are supplied with limited energy and it is a great concern to extend the network lifetime. To cope with those problems, this paper proposes a novel and simple routing metric, predicted remaining deliveries (PRD), combining parameters, including the residual energy, link quality, end-to-end delay, and distance together to achieve better network performance. PRD assigns weights to individual links as well as end-to-end delay, so as to reflect the node status in the long run of the network. Large-scale simulation results demonstrate that PRD performs better than the widely used ETX metric as well as other two metrics devised recently in terms of energy consumption and end-to-end delay, while guaranteeing packet delivery ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.