Abstract
Mobile edge computing (MEC) is an emergent architecture, which brings computation and storage resources to the edge of mobile network and provides rich services and applications near the end users. The joint problem of task offloading and resource allocation in the multi-user collaborative mobile edge computing network (C-MEC) based on Orthogonal Frequency-Division Multiple Access (OFDMA) is a challenging issue. In this paper, we investigate the offloading decision, collaboration decision, computing resource allocation and communication resource allocation problem in C-MEC. The delay-sensitive tasks of users can be computed locally, offloaded to collaborative devices or MEC servers. The goal is to minimize the total energy consumption of all mobile users under the delay constraint. The problem is formulated as a mixed-integer nonlinear programming (MINLP), which involves the joint optimization of task offloading decision, collaboration decision, subcarrier and power allocation, and computing resource allocation. A two-level alternation method framework is proposed to solve the formulated MINLP problem. In the upper level, a heuristic algorithm is used to handle the collaboration decision and offloading decisions under the initial setting; and in the lower level, the allocation of power, subcarrier, and computing resources is updated through deep reinforcement learning based on the current offloading decision. Simulation results show that the proposed algorithm achieves excellent performance in energy efficient and task completion rate (CR) for different network parameter settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.