Abstract

Device-to-device (D2D) is one of the promising technology that can be used in association with cellular networks for the provision of high data rates, which is the foremost demand of today’s cellular users. The climatic changes due to combustion are posing another big challenge that needs to be addressed by today’s technologists to strive for existence of humanity. Thus developing energy efficient schemes for the deployment of such joint venture is a challenging task due to increased system complexity. This paper addresses the mode selection, user admission control and the resource allocation issues related to optimizing the overall Energy Efficiency (EE) of the cellular systems. The contributions that have been made in this paper are (1) Development of a pooled D2D and cellular network optimization model for efficient resource allocation (2) Development of an algorithm for maximization of EE for the proposed joint D2D cellular network . The problem formulated is a Mixed Integer Nonlinear Problem, whereas such problems belong to a class of optimization problems whose computational complexity is quite high that is NP-hard. In such hard problems the computational complexity increases with increasing the number of users that make these problems more challenging. Finding the optimal solution of such hard problems by the brute force and searching the feasible space is also challenging since the complexity increases exponentially by increasing the admitted users. A Mesh Adaptive Direct Search algorithm has been proposed to find the EE resource allocation for this user admission controlled D2D based cellular network. Based on analysis of our simulation results, it can be clearly designated that our proposed solution for increasing the EE for this joint cellular and D2D venture is very much close to optimal solution provided by Exhaustive Search Algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.