Abstract

In this paper, we explore potentials of leveraging spin-based in-memory computing platform as an accelerator for Binary Convolutional Neural Networks (BCNN). Such platform can implement the dominant convolution computation based on presented Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) array. The proposed array architecture could simultaneously work as non-volatile memory and a reconfigurable in-memory logic (AND, OR) without add-on logic circuits to memory chip as in conventional logic-in-memory designs. The computed logic output could be also simply read out like a normal MRAM bit-cell using the shared memory peripheral circuits. We employ such intrinsic in-memory computing architecture to efficiently process data within memory to greatly reduce power hungry and omit long distance data communication concerning state-of-the-art BCNN hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.