Abstract

Improvements to the energy efficiency of open-cycle tumble dryers have the potential to substantially reduce CO2 emissions. A novel adsorption-based thermal energy storage system is integrated into a gas-fired dryer here. An adsorbent bed is used to capture waste heat from the exhaust stream, store, and reuse it in the current and subsequent drying cycles. A heat and mass transfer model is developed to capture the dynamics of the thermal storage system, and validated experimentally on a 11.33-kg capacity gas-fired tumble dryer. The model predicts the inlet and exit temperatures of the drum with average absolute deviations of 7.1% and 8.4%, respectively. The analysis indicates that an 8.5-kg silica gel adsorption bed can yield a specific moisture extraction ratio of 1.166 kWhkgw−1, a 22% reduction over the energy consumption of the conventional gas-fired tumble dryer. In addition, drying time is reduced by 19%. This technology can be implemented in a variety of dryers to take advantage of the waste heat in the exhaust stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.