Abstract

Energy-efficient gait planning and control is established for biped robots, which utilizes the allowable zero moment point (ZMP) region. Based on 3-D linear inverted pendulum mode (LIPM), we construct a practical gait planning algorithm for a given travel distance minimizing the energy consumed by the actuators of humanoid joints with 1) an online gait synthesis (GSYN) algorithm to generate a complete walking cycle (a starting step, several cyclic steps, and a stopping step) compromising waking stability and energy efficiency at the fully utilizing allowable ZMP region and with 2) effective gait parameter optimization to maximize the energy efficiency of the gaits generated by GSYN, finding two optimal parameters-number of steps and average walking speed-satisfying geometrical constraints, friction force limit, and yawing moment limit to guarantee feasible motions. The proposed algorithm was verified through simulations, and the gait control system was implemented on a DARwIn-OP humanoid robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call