Abstract

Given the growing importance of cold chains and the need to promote sustainable processes, energy efficiency in refrigerated transports is investigated at operational level. The Refrigerated Routing Problem is defined, involving multi-drop deliveries of palletised unit loads of frozen food from a central depot to clients. The objective is to select the route with minimum fuel consumption for both traction and refrigeration. The problem formulation considers speed variation due to traffic congestion phenomena, as well as decreasing load on board along the route as successive clients are visited. Transmission load for exposure of the vehicle to outdoor temperatures and infiltration load at door opening are modelled, taking into account outdoor conditions varying along the day and the year. The resulting multi-period problem is modelled and solved by means of Constraint Programming. Test scenarios come from a real local network for frozen bread dough distributed to supermarkets. Results show how fuel minimisation leads to the selection of different routes in comparison to the traditional total travel distance or time objectives. Energy savings are affected by demand distribution among the clients, departure time, number of visits per tour, seasonality and location of the delivery network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.