Abstract

Reducing energy comsuption is crucial to commercialize electrochemical oxidation technologies. In this study, a novel PbO2 composite electrode (Ti-foam/PbO2-GN) was successfully fabricated based on a porous titanium (Ti) foam substrate and a β-PbO2 active layer embedded with multiple graphene (GN) interlayers, and applied as an anode for energy-efficient pulse electrochemical oxidation of ciprofloxacin (CIP). In contrast to PbO2 and Ti-foam/PbO2 electrodes, the Ti-foam/PbO2-GN electrode surface exhibited a more compact structure, smaller crystal grain size, and greater electrochemical active surface area. CIP removal of 89.7% was obtained with a low energy consumption (EE/O) of 6.17 kWh m−3 under pulse electrolysis conditions with a current density of 25.00 mA cm−2, pulse frequency of 5000 Hz, and pulse duty cycle of 50.0%. Up to 70.7% of the energy was saved in the pulse current mode compared to the direct current mode. Narrowing the electrode spacing to 2 cm facilitated the mass transfer process and enhanced oxidation efficiency. According to the intermediates identified, the pulse electrolysis of CIP primarily involved hydroxylation of the quinolone ring, breaking of the piperazine ring, defluorination, and decarboxylation processes, and a possible degradation mechanism of CIP was proposed. The continuous oxidation performance of CIP and the relatively low leaching of Pb2+ suggested that the Ti-foam/PbO2-GN electrode exhibited excellent stability, repeatability, and safety. The degradation results of CIP in real water also exhibits the great potential of environmental application. As a result, pulse electrochemical oxidation using a Ti-foam/PbO2-GN electrode has proven to be an energy-efficient and promising alternative for antibiotic wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.