Abstract

Deep neural networks (DNNs) are being heavily utilized in modern applications, putting energy-constraint devices to the test. To bypass high energy consumption issues, approximate computing has been employed in DNN accelerators to balance out the accuracy-energy reduction trade-off. However, the approximation-induced accuracy loss can be very high and drastically degrade the performance of the DNN. Therefore, there is a need for a fine-grain mechanism that would assign specific DNN operations to approximation to maintain acceptable DNN accuracy, while achieving low energy consumption. We present an automated framework for weight-to-approximation mapping through formal property exploration for approximate DNN accelerators. At the MAC unit level, our experimental evaluation surpassed already energy-efficient mappings by more than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times 2$ </tex-math></inline-formula> in terms of energy gains, while supporting a fine-grain control over the introduced approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.