Abstract

Information and Communication Technology (ICT) is growing rapidly, and ICT devices are consuming plenty of energy, for communication systems. In Gb/s transmission system high range and high- speed optical transmitter requires high power for transmitting information at long distance. The existing techniques are consuming vast amount of power, exhibits heating effect, and leakage power problems for optical transmitter of 40 Gb/s or more. In this work, an energy efficient 100Gb/s optical DPSK transmitter is designed using UltraScale Field Programming Gate Array (FPGA). The design is realized by controlling the impedance of 100Gb/s optical DPSK transmitter using Digitally Controlled Impedance (DCI) IO (Input/ Output) Standards available on UltraScale FPGA. It is determined that 80% power is reduced using designed 100Gb/s optical DPSK transmitter, for 100 GHz, 300 GHz, 900 GHz and 12 THz using High Speed Low Voltage DCI (HSLVDCI_15) IO Standard compared to optical transmitter design without IO Standard. Furthermore, using designed system 90% leakage power is also reduced. The designed energy efficient optical transmitter can be interfaced with other optical components, to provide the green optical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call